Portraying the Earth
A brief history of maps

- 2300 BC clay tablets
- 1100 BC natural resources and roads
- 800 BC rock formations and ocean currents
- 384-194 BC Aristotle and Eratosthenes
• 100 AD Ptolemy
 • Roman Empire
 • Guide to Geography
 • maps
• 1000 AD al-Idrisi
 • built upon Ptolemy
• 1400 - 1700 AD
 • maps of new lands
1507 Waldseemuller World Map
• Most Expensive map ever sold
• Library of Congress
Modern Mapping

- Aerial Photography
- World War 1
- World War 2
 - Infrared
- Satellites
Modern Mapping

- Global Positioning System
 - Department of Defense
 - Scientific research
 - Automobile navigation
- Geographic Information Systems
 - Computer based
 - Wealth of information
Maps

- Two dimensional representation of the Earth
 - Displays the spatial distribution of selected phenomena
- Shows distance, direction, size and shape
- Maps have limitations
Map Scale

• A map is always smaller than the portion of the Earth it represents
• The ratio of the image on a map to the real world
 • relates a unit on the map to a similar unit on the ground
• Makes it possible to measure distance, area and compare sizes
Types of Scales

• Graphic map scale
 • Line marked off for distance
 • Simple
 • Remains correct when enlarging or shrinking map

• Fractional map scale
 • One unit on the map = X units on the earth
 • 1:63,360
 • Incorrect when map is resized

• Verbal map scale
 • Word scale
 • 1 inch = 125 miles
 • Incorrect when map is resized
Map Essentials

- Maps must contain a few basic components for clarity.
- Title - What is the map of?
- Date - When was the map produced?
- Legend - Explains symbols on map.
- Scale
- Direction - Which way is north?
- Location - System for locating places on the map
Maps must contain a few basic components for clarity:

- **Title**: What is the map of?
- **Date**: When was the map produced?
- **Legend**: Explains symbols on map.
- **Scale**:
- **Direction**: Which way is north?
- **Location**: System for locating places on the map.

Japan (Tohoku) tsunami, March 11, 2011

Maximum wave amplitudes

NOAA Center for Tsunami Research

NOAA Research Product, not an official forecast
Map Projections

• System to transform the spherical surface of the earth onto a flat surface

• Conversion from three dimensional globe to two dimensional flat map causes distortion
 • Distance, direction, area, shape and proximity
 • Always some degree of distortion on flat maps
 • Less distortion the larger the scale map
• Cylindrical projections
 • No distortion at center
 • progressively gets more distorted the further away
• Conical
 • Uses a cone which meets the earth along a parallel of latitude
 • Useful for long east-west map
Mercator: The most famous projection

- 1569 - Gerardus Mercator
- Originally navigational chart
- Relatively undistorted in low latitudes
- Distortion rapidly increases in mid and high latitudes
- Kept shape of land masses in return for distorted size of land masses
- Creates misconceptions
Greenland 800,000 square miles
Africa 11,600,000 square miles
Isolines

- An isoline is a line that connects points of equal value
 - Always closed lines with no ends
 - Represent gradations in a quantity
 - Never cross each other
 - The interval between two isolines is always the same
Time Zones

• Not a problem for small countries
• United States spans 90 degrees of longitude
 • 1870 22 time changes from Maine to San Francisco
• Standard time zones set at 1884 conference
• Daylight Savings Time
 • Extend daylight for evening activities to save energy during war time
 • Number of days under daylight savings has been extended in the past
• Roughly every 15 degrees of longitude is an hour time change